
Deductive Program Verification

Jean-Christophe Filliâtre
CNRS

ITP 2018

Oxford, UK
July 12, 2018

1 / 32

joint work with

François Bobot

Claude Marché

Guillaume Melquiond

Andrei Paskevich

2 / 32

a question for programmers

shall I be pure or impure?

3 / 32

a question for program verifiers

shall I be pure or impure?

FP
mutability
feast

the While

language WhyML

4 / 32

a question for program verifiers

shall I be pure or impure?

FP
mutability
feast

the While

language WhyML

4 / 32

a question for program verifiers

shall I be pure or impure?

FP
mutability
feast

the While

language

WhyML

4 / 32

a question for program verifiers

shall I be pure or impure?

FP
mutability
feast

the While

language WhyML

4 / 32

WhyML

goal

no model of the heap
to get simpler VCs

solution

records with mutable fields
+

static control of aliases

5 / 32

mutable variables aka references

type ref ’a = {

mutable contents: ’a;

}

6 / 32

we can model some data structures

e.g. arrays

type array ’a = private {

mutable ghost elts: int -> ’a;

length: int;

}

7 / 32

we can nest mutable types

e.g. a heap in a resizeable array

type heap = {

mutable data: array elt;

mutable size: int;

mutable ghost view: bag elt;

}

the type checker is powerful enough to let you replace
the data field while keeping track of aliases [ESOP 2013]

8 / 32

the key is abstraction

there are mutable DS you cannot implement
(e.g. linked lists, mutable trees)

yet you can model them easily

then you can verify client code, thanks to proof modularity

9 / 32

example: union-find

type elem

val make : unit -> elem

val union: elem -> elem -> unit

val find : elem -> elem

val same : elem -> elem -> bool

10 / 32

example: union-find

type elem

val make : unit -> elem

val union: elem -> elem -> unit

val find : elem -> elem

val same : elem -> elem -> bool

x

10 / 32

example: union-find

type elem

val make : unit -> elem

val union: elem -> elem -> unit

val find : elem -> elem

val same : elem -> elem -> bool

x y

10 / 32

example: union-find

type elem

val make : unit -> elem

val union: elem -> elem -> unit

val find : elem -> elem

val same : elem -> elem -> bool

x y z

10 / 32

example: union-find

type elem

val make : unit -> elem

val union: elem -> elem -> unit

val find : elem -> elem

val same : elem -> elem -> bool

x y z

10 / 32

example: union-find

type elem

val make : unit -> elem

val union: elem -> elem -> unit

val find : elem -> elem

val same : elem -> elem -> bool

x y z u

10 / 32

example: union-find

type elem

val make : unit -> elem

val union: elem -> elem -> unit

val find : elem -> elem

val same : elem -> elem -> bool

x y

z

u

10 / 32

example: union-find

type elem

val make : unit -> elem

val union: elem -> elem -> unit

val find : elem -> elem

val same : elem -> elem -> bool

x y

z

u v

10 / 32

example: union-find

type elem

val make : unit -> elem

val union: elem -> elem -> unit

val find : elem -> elem

val same : elem -> elem -> bool

x y

z

v u

10 / 32

example: union-find

type elem

val make : unit -> elem

val union: elem -> elem -> unit

val find : elem -> elem

val same : elem -> elem -> bool

x y

z

v u w

10 / 32

example: union-find

type elem

val make : unit -> elem

val union: elem -> elem -> unit

val find : elem -> elem

val same : elem -> elem -> bool

x y z

v u

w

10 / 32

example: union-find

type elem

type uf = {

mutable dom: set elem;

mutable rep: elem -> elem;

}

val ghost create () : uf

val make (ghost uf: uf) () : elem

val union (ghost uf: uf) (x y: elem) : unit

val find (ghost uf: uf) (x : elem) : elem

val same (ghost uf: uf) (x y: elem) : bool

11 / 32

what else

WhyML features

• polymorphism

• algebraic data types, pattern matching

• exceptions, break, continue, return

• ghost code and ghost data [CAV 2014]

• contracts, loop and type invariants

• VCGen = either traditional or Flanagan/Saxe style WP

12 / 32

a logic for program verification

goal
rich enough to make your life easier,
simple enough to be sent to ATPs

our solution
a total, polymorphic first-order logic with

• algebraic types & pattern matching

• recursive definitions

• (co)inductive predicates

• mapping type α→ β, λ-notation, application

[FroCos 2011, CADE 2013, VSTTE 2014]

13 / 32

a logic for program verification

goal
rich enough to make your life easier,
simple enough to be sent to ATPs

our solution
a total, polymorphic first-order logic with

• algebraic types & pattern matching

• recursive definitions

• (co)inductive predicates

• mapping type α→ β, λ-notation, application

[FroCos 2011, CADE 2013, VSTTE 2014]

13 / 32

Why3

WhyML

Why3 logic

Z3Alt-Ergo CVC4... ...

OCaml C

CJava Adayour language

your VCs

14 / 32

Why3

WhyML

Why3 logic

Z3Alt-Ergo CVC4... ...

OCaml C

CJava Adayour language

your VCs

14 / 32

Why3

WhyML

Why3 logic

Z3Alt-Ergo CVC4... ...

OCaml C

CJava Adayour language

your VCs

14 / 32

Why3

WhyML

Why3 logic

Z3Alt-Ergo CVC4... ...

OCaml C

CJava Ada

your language

your VCs

14 / 32

Why3

WhyML

Why3 logic

Z3Alt-Ergo CVC4... ...

OCaml C

CJava Adayour language

your VCs

14 / 32

Why3

WhyML

Why3 logic

Z3Alt-Ergo CVC4... ...

OCaml C

CJava Adayour language

your VCs

14 / 32

using off-the-shelf provers

Why3 currently supports 25+ ITPs and ATPs

for each prover, a special “driver” file controls [Boogie 2011]

• logical transformations to apply

• input/output format

• predefined symbols, axioms to be removed

15 / 32

example: Z3 driver

printer "smtv2"

valid "^unsat"

invalid "^sat"

transformation "inline trivial"

transformation "eliminate builtin"

transformation "eliminate definition"

transformation "eliminate inductive"

transformation "eliminate algebraic"

transformation "simplify formula"

transformation "discriminate"

transformation "encoding smt"

prelude "(set-logic AUFNIRA)"

theory BuiltIn

syntax type int "Int"

syntax type real "Real"

syntax predicate (=) "(= %1 %2)"

end
...

16 / 32

demo

union-find

joint work with S. Melo de Sousa, M. Pereira, and M. Clochard

17 / 32

API

type elem

type uf = ...

val ghost create () : uf

val make (ghost uf: uf) () : elem

val union (ghost uf: uf) (x y: elem) : unit

val find (ghost uf: uf) (x : elem) : elem

val same (ghost uf: uf) (x y: elem) : bool

18 / 32

specification

type elem

type uf = {

mutable dom: set elem;

mutable rep: elem -> elem;

}

invariant { forall x. mem x dom ->

mem (rep x) dom && rep (rep x) = rep x }

val ghost create () : uf

ensures { result.dom = empty }

19 / 32

specification

val make (ghost uf: uf) () : elem

writes { uf.dom, uf.rep }

ensures { not (mem result (old uf.dom)) }

ensures { uf.dom = add result (old uf.dom) }

ensures { uf.rep = (old uf.rep)[result <- result] }

val find (ghost uf: uf) (x: elem) : elem

requires { mem x uf.dom }

ensures { result = uf.rep x }

20 / 32

specification

val union (ghost uf: uf) (x y: elem) : ghost elem

requires { mem x uf.dom }

requires { mem y uf.dom }

writes { uf.rep }

ensures { result = old (uf.rep x) ||

result = old (uf.rep y) }

ensures { forall z. mem z uf.dom ->

uf.rep z = if old (uf.rep z = uf.rep x ||

uf.rep z = uf.rep y)

then result

else old (uf.rep z) }

21 / 32

implementation

type elem =

content ref

and content =

| Link of elem

| Root of int

22 / 32

implementation

type elem =

content ref

and content =

| Link of elem

| Root of int

x 0

22 / 32

implementation

type elem =

content ref

and content =

| Link of elem

| Root of int

x 0 y 0

22 / 32

implementation

type elem =

content ref

and content =

| Link of elem

| Root of int

x 0 y 0 z 0

22 / 32

implementation

type elem =

content ref

and content =

| Link of elem

| Root of int

x 1

y

z 0

22 / 32

implementation

type elem =

content ref

and content =

| Link of elem

| Root of int

x 1

y

z 0 u 0

22 / 32

implementation

type elem =

content ref

and content =

| Link of elem

| Root of int

x 1

y z

u 0

22 / 32

implementation

type elem =

content ref

and content =

| Link of elem

| Root of int

x 1

y z

u 0 v 0

22 / 32

implementation

type elem =

content ref

and content =

| Link of elem

| Root of int

x 1

y z

v 1

u

22 / 32

implementation

type elem =

content ref

and content =

| Link of elem

| Root of int

x 1

y z

v 1

u

w 0

22 / 32

implementation

type elem =

content ref

and content =

| Link of elem

| Root of int

x 2

y z v

u

w 0

22 / 32

implementation

type elem =

content ref

and content =

| Link of elem

| Root of int

x 2

y z v

u

w 0

let’s verify this with Why3

22 / 32

Why3 implementation

too complex for Why3’s type checker; let’s model the heap

type elem =

content ref

and content =

| Link of elem

| Root of int

type loc

type elem =

loc

type content =

| Link loc

| Root Peano.t

type heap = {

ghost mutable

refs: loc -> option content;

}

23 / 32

termination

it would be very tempting to introduce an inductive notion of path

inductive path (h: heap) (x y: elem) =

| Path0: forall x y k.

h.refs x = Some (Root k) ->

path h x x

| Path1: forall x y z.

h.refs x = Some (Link y) ->

path h y z -> path h x z

this way, we would have path heap x (rep x) as an invariant
and this would ensure the termination of find

24 / 32

termination

it would be very tempting to introduce an inductive notion of path

inductive path (h: heap) (x y: elem) =

| Path0: forall x y k.

h.refs x = Some (Root k) ->

path h x x

| Path1: forall x y z.

h.refs x = Some (Link y) ->

path h y z -> path h x z

this way, we would have path heap x (rep x) as an invariant
and this would ensure the termination of find

24 / 32

termination

but this is a bad idea, as each assignment in the heap requires you
to re-establish all paths (some unchanged, some shortened, etc.)

instead, we assign

• a distance to each node, increasing along Link

• a maximum distance for the whole union-find structure

25 / 32

termination

but this is a bad idea, as each assignment in the heap requires you
to re-establish all paths (some unchanged, some shortened, etc.)

instead, we assign

• a distance to each node, increasing along Link

• a maximum distance for the whole union-find structure

maxd = 1 x 1

y z

1

0 0

v 1

u

1

0

25 / 32

termination

but this is a bad idea, as each assignment in the heap requires you
to re-establish all paths (some unchanged, some shortened, etc.)

instead, we assign

• a distance to each node, increasing along Link

• a maximum distance for the whole union-find structure

maxd = 2 x 2

y z v

u

2

0 0 1

0

25 / 32

termination

but this is a bad idea, as each assignment in the heap requires you
to re-establish all paths (some unchanged, some shortened, etc.)

instead, we assign

• a distance to each node, increasing along Link

• a maximum distance for the whole union-find structure

maxd = 2 x 2

y z v

u

2

0 0 1

0

25 / 32

extraction to OCaml

Why3 extraction mechanism

1. removes ghost code

2. maps some Why3 symbols to OCaml symbols

here

• type Peano.t is mapped to OCaml’s type int

• our custom mini-heap is mapped to OCaml’s references

26 / 32

related work

Charguéraud & Pottier did a Coq proof [ITP 2015, JAR 2017]

of a similar OCaml code, using CFML

• includes a proof of complexity!

• maps OCaml’s type int to Coq’s type Z (unsound)

• more than 4k lines

27 / 32

lessons learned

1. modeling the heap can be easy
I can be local
I incurs a small TCB

2. avoid recursive/inductive definitions for better automation

two other examples:
I heap stored in an array
I inverting a permutation in-place

28 / 32

heap stored in an array

a 1 3 4 4 7 5 ...

1

3

4 7

4

5

0 1 2 3 4 5

0

1

3 4

2

5

it would be tempting to introduce trees

but a universal, local invariant

∀i . a[i] ≤ a[2i + 1], a[2i + 2]

is all you need

29 / 32

heap stored in an array

a 1 3 4 4 7 5 ...

1

3

4 7

4

5

0 1 2 3 4 5

0

1

3 4

2

5

it would be tempting to introduce trees

but a universal, local invariant

∀i . a[i] ≤ a[2i + 1], a[2i + 2]

is all you need

29 / 32

inverting a permutation in-place

Algorithm I in TAOCP [Sec. 1.3.3, page 176]

4 3 0 1 5 2

again it would tempting to introduce paths, orbits, cycles, etc.

but again a universal, local invariant suffices

30 / 32

inverting a permutation in-place

Algorithm I in TAOCP [Sec. 1.3.3, page 176]

4 3 0 1 5 -1

again it would tempting to introduce paths, orbits, cycles, etc.

but again a universal, local invariant suffices

30 / 32

inverting a permutation in-place

Algorithm I in TAOCP [Sec. 1.3.3, page 176]

4 3 -6 1 5 -1

again it would tempting to introduce paths, orbits, cycles, etc.

but again a universal, local invariant suffices

30 / 32

inverting a permutation in-place

Algorithm I in TAOCP [Sec. 1.3.3, page 176]

-3 3 -6 1 5 -1

again it would tempting to introduce paths, orbits, cycles, etc.

but again a universal, local invariant suffices

30 / 32

inverting a permutation in-place

Algorithm I in TAOCP [Sec. 1.3.3, page 176]

-3 3 -6 1 -1 -1

again it would tempting to introduce paths, orbits, cycles, etc.

but again a universal, local invariant suffices

30 / 32

inverting a permutation in-place

Algorithm I in TAOCP [Sec. 1.3.3, page 176]

-3 3 -6 1 -1 4

again it would tempting to introduce paths, orbits, cycles, etc.

but again a universal, local invariant suffices

30 / 32

inverting a permutation in-place

Algorithm I in TAOCP [Sec. 1.3.3, page 176]

-3 3 -6 1 0 4

again it would tempting to introduce paths, orbits, cycles, etc.

but again a universal, local invariant suffices

30 / 32

inverting a permutation in-place

Algorithm I in TAOCP [Sec. 1.3.3, page 176]

-3 3 -6 -1 0 4

again it would tempting to introduce paths, orbits, cycles, etc.

but again a universal, local invariant suffices

30 / 32

inverting a permutation in-place

Algorithm I in TAOCP [Sec. 1.3.3, page 176]

-3 -4 -6 -1 0 4

again it would tempting to introduce paths, orbits, cycles, etc.

but again a universal, local invariant suffices

30 / 32

inverting a permutation in-place

Algorithm I in TAOCP [Sec. 1.3.3, page 176]

-3 -4 -6 1 0 4

again it would tempting to introduce paths, orbits, cycles, etc.

but again a universal, local invariant suffices

30 / 32

inverting a permutation in-place

Algorithm I in TAOCP [Sec. 1.3.3, page 176]

-3 -4 5 1 0 4

again it would tempting to introduce paths, orbits, cycles, etc.

but again a universal, local invariant suffices

30 / 32

inverting a permutation in-place

Algorithm I in TAOCP [Sec. 1.3.3, page 176]

-3 3 5 1 0 4

again it would tempting to introduce paths, orbits, cycles, etc.

but again a universal, local invariant suffices

30 / 32

inverting a permutation in-place

Algorithm I in TAOCP [Sec. 1.3.3, page 176]

2 3 5 1 0 4

again it would tempting to introduce paths, orbits, cycles, etc.

but again a universal, local invariant suffices

30 / 32

inverting a permutation in-place

Algorithm I in TAOCP [Sec. 1.3.3, page 176]

2 3 5 1 0 4

again it would tempting to introduce paths, orbits, cycles, etc.

but again a universal, local invariant suffices

30 / 32

many other things about Why3

• Why3+Alt-Ergo in your browser [http://why3.lri.fr/try/]

• Python frontend for teaching purposes

• Why3’s OCaml API [BOOGIE 2011]

• proof by reflection [VSTTE 2016]

including imperative programs [IJCAR 2018, next Sunday]

• extraction to C

• logical connectives by and so to encode proofs

• floating-point arithmetic [ARITH 2007]

• checking the consistency of our library using Coq

• preserving proofs across changes [VSTTE 2013]

31 / 32

http://why3.lri.fr/try/

visit our gallery

http://toccata.lri.fr/gallery/why3.en.html

more than 150 verified programs

• data structures: AVL/red-black trees, Fenwick trees, ropes,
skew/binomial/pairing/Braun/leftist heaps, etc.

• algorithms: algorithm I, Tortoise and Hare, sorting, graph, etc.

• solutions to many competitions/challenges (e.g. VerifyThis)

32 / 32

http://toccata.lri.fr/gallery/why3.en.html

